1,089 research outputs found

    Anisotropic Bose-Einstein condensates and completely integrable dynamical systems

    Full text link
    A Gaussian ansatz for the wave function of two-dimensional harmonically trapped anisotropic Bose-Einstein condensates is shown to lead, via a variational procedure, to a coupled system of two second-order, nonlinear ordinary differential equations. This dynamical system is shown to be in the general class of Ermakov systems. Complete integrability of the resulting Ermakov system is proven. Using the exact solution, collapse of the condensate is analyzed in detail. Time-dependence of the trapping potential is allowed

    Coupled-mode theory for Bose-Einstein condensates

    Full text link
    We apply the concepts of nonlinear guided-wave optics to a Bose-Einstein condensate (BEC) trapped in an external potential. As an example, we consider a parabolic double-well potential and derive coupled-mode equations for the complex amplitudes of the BEC macroscopic collective modes. Our equations describe different regimes of the condensate dynamics, including the nonlinear Josephson effect for any separation between the wells. We demonstrate macroscopic self-trapping for both repulsive and attractive interactions, and confirm our results by numerical simulations.Comment: 4 pages, 5 figures; typos removed, figures amended; submitted to PR

    Vortex states in binary mixture of Bose-Einstein condensates

    Full text link
    The vortex configurations in the Bose-Einstein condensate of the mixture of two different spin states |F=1,m_f=-1> and |2,1> of ^{87}Rb atoms corresponding to the recent experiments by Matthews et. al. (Phys. Rev. Lett. 83, 2498 (1999)) are considered in the framework of the Thomas-Fermi approximation as functions of N_2/N_1, where N_1 is the number of atoms in the state |1,-1> and N_2 - in the state |2,1>. It is shown that for nonrotating condensates the configuration with the |1,-1> fluid forming the shell about the |2,1> fluid (configuration "a") has lower energy than the opposite configuration (configuration "b") for all values of N_2/N_1. When the |1,-1> fluid has net angular momentum and forms an equatorial ring around the resting central condensate |2,1>, the total energy of the system is higher than the ground energy, but the configuration "a" has lower energy than the configuration "b" for all N_2/N_1. On the other hand, when the |2> fluid has the net angular momentum, for the lowest value of the angular momentum \hbar l (l=1) there is the range of the ratio N_2/N_1 where the configuration "b" has lower energy than the configuration "a". For higher values of the angular momentum the configuration "b" is stable for all values of N_2/N_1.Comment: minor changes, references adde

    Dynamics of a classical gas including dissipative and mean field effects

    Full text link
    By means of a scaling ansatz, we investigate an approximated solution of the Boltzmann-Vlasov equation for a classical gas. Within this framework, we derive the frequencies and the damping of the collective oscillations of a harmonically trapped gas and we investigate its expansion after release of the trap. The method is well suited to studying the collisional effects taking place in the system and in particular to discussing the crossover between the hydrodynamic and the collisionless regimes. An explicit link between the relaxation times relevant for the damping of the collective oscillations and for the expansion is established.Comment: 4 pages, 1 figur

    Solitons in nonlocal nonlinear media: exact results

    Get PDF
    We investigate the propagation of one-dimensional bright and dark spatial solitons in a nonlocal Kerr-like media, in which the nonlocality is of general form. We find an exact analytical solution to the nonlinear propagation equation in the case of weak nonlocality. We study the properties of these solitons and show their stability.Comment: 9 figures, submitted to Phys. Rev.

    Modulational instability in nonlocal nonlinear Kerr media

    Get PDF
    We study modulational instability (MI) of plane waves in nonlocal nonlinear Kerr media. For a focusing nonlinearity we show that, although the nonlocality tends to suppress MI, it can never remove it completely, irrespectively of the particular profile of the nonlocal response function. For a defocusing nonlinearity the stability properties depend sensitively on the response function profile: for a smooth profile (e.g., a Gaussian) plane waves are always stable, but MI may occur for a rectangular response. We also find that the reduced model for a weak nonlocality predicts MI in defocusing media for arbitrary response profiles, as long as the intensity exceeds a certain critical value. However, it appears that this regime of MI is beyond the validity of the reduced model, if it is to represent the weakly nonlocal limit of a general nonlocal nonlinearity, as in optics and the theory of Bose-Einstein condensates.Comment: 8 pages, submitted to Phys. Rev.

    Collective excitations of a two-dimensional interacting Bose gas in anti-trap and linear external potentials

    Full text link
    We present a method of finding approximate analytical solutions for the spectra and eigenvectors of collective modes in a two-dimensional system of interacting bosons subjected to a linear external potential or the potential of a special form u(x,y)=μucosh2x/lu(x,y)=\mu -u \cosh^2 x/l, where μ\mu is the chemical potential. The eigenvalue problem is solved analytically for an artificial model allowing the unbounded density of the particles. The spectra of collective modes are calculated numerically for the stripe, the rare density valley and the edge geometry and compared with the analytical results. It is shown that the energies of the modes localized at the rare density region and at the edge are well approximated by the analytical expressions. We discuss Bose-Einstein condensation (BEC) in the systems under investigations at T0T\ne 0 and find that in case of a finite number of the particles the regime of BEC can be realized, whereas the condensate disappears in the thermodynamic limit.Comment: 10 pages, 2 figures include

    Stability of trapped Bose-Einstein condensates

    Full text link
    In three-dimensional trapped Bose-Einstein condensate (BEC), described by the time-dependent Gross-Pitaevskii-Ginzburg equation, we study the effect of initial conditions on stability using a Gaussian variational approach and exact numerical simulations. We also discuss the validity of the criterion for stability suggested by Vakhitov and Kolokolov. The maximum initial chirp (initial focusing defocusing of cloud) that can lead a stable condensate to collapse even before the number of atoms reaches its critical limit is obtained for several specific cases. When we consider two- and three-body nonlinear terms, with negative cubic and positive quintic terms, we have the conditions for the existence of two phases in the condensate. In this case, the magnitude of the oscillations between the two phases are studied considering sufficient large initial chirps. The occurrence of collapse in a BEC with repulsive two-body interaction is also shown to be possible.Comment: 15 pages, 11 figure

    Mean field effects in a trapped classical gas

    Full text link
    In this article, we investigate mean field effects for a bosonic gas harmonically trapped above the transition temperature in the collisionless regime. We point out that those effects can play also a role in low dimensional system. Our treatment relies on the Boltzmann equation with the inclusion of the mean field term. The equilibrium state is first discussed. The dispersion relation for collective oscillations (monopole, quadrupole, dipole modes) is then derived. In particular, our treatment gives the frequency of the monopole mode in an isotropic and harmonic trap in the presence of mean field in all dimensions.Comment: 4 pages, no figure submitted to Phys. Rev.

    Stability and collapse of localized solutions of the controlled three-dimensional Gross-Pitaevskii equation

    Full text link
    On the basis of recent investigations, a newly developed analytical procedure is used for constructing a wide class of localized solutions of the controlled three-dimensional (3D) Gross-Pitaevskii equation (GPE) that governs the dynamics of Bose-Einstein condensates (BECs). The controlled 3D GPE is decomposed into a two-dimensional (2D) linear Schr\"{o}dinger equation and a one-dimensional (1D) nonlinear Schr\"{o}dinger equation, constrained by a variational condition for the controlling potential. Then, the above class of localized solutions are constructed as the product of the solutions of the transverse and longitudinal equations. On the basis of these exact 3D analytical solutions, a stability analysis is carried out, focusing our attention on the physical conditions for having collapsing or non-collapsing solutions.Comment: 21 pages, 14 figure
    corecore